We have factors (probabilities) \(P(T), P(C | T), P(S | T), P(E | C, S)\)
Want to find: \(P(T|+e)\)
Procedure:
-
Join all factors with \(C\), forming \(P(C,+e | T, S)=P(C | T) \cdot P(+e | C, S)\)
-
Sum out \(C\), giving \(P(+e | T, S)\)
-
Join on \(S\), giving \(P(+e, S | T) = P(+e | T, S) \cdot P(S | T)\)
-
Sum out \(S\) to find \(P(+e | T)\)
-
\(P(+e) = \sum\limits_T P(+e | T) \cdot P(T)\), \(P(T | +e) = \frac{P(+e | T)
P(T)}{P(+e)}\)